Transcription of DWARF4 Plays a Crucial Role in Auxin-Regulated Root Elongation in Addition to Brassinosteroid Homeostasis in Arabidopsis thaliana
نویسندگان
چکیده
The expression of DWARF4 (DWF4), which encodes a C-22 hydroxylase, is crucial for brassinosteroid (BR) biosynthesis and for the feedback control of endogenous BR levels. To advance our knowledge of BRs, we examined the effects of different plant hormones on DWF4 transcription in Arabidopsis thaliana. Semi-quantitative reverse-transcriptase PCR showed that the amount of the DWF4 mRNA precursor either decreased or increased, similarly with its mature form, in response to an exogenously applied bioactive BR, brassinolide (BL), and a BR biosynthesis inhibitor, brassinazole (Brz), respectively. The response to these chemicals in the levels of β-glucuronidase (GUS) mRNA and its enzymatic activity is similar to the response of native DWF4 mRNA in DWF4::GUS plants. Contrary to the effects of BL, exogenous auxin induced GUS activity, but this enhancement was suppressed by anti-auxins, such as α-(phenylethyl-2-one)-IAA and α-tert-butoxycarbonylaminohexyl-IAA, suggesting the involvement of SCF(TIR1)-mediated auxin signaling in auxin-induced DWF4 transcription. Auxin-enhanced GUS activity was observed exclusively in roots; it was the most prominent in the elongation zones of both primary and lateral roots. Furthermore, auxin-induced lateral root elongation was suppressed by both Brz application and the dwf4 mutation, and this suppression was rescued by BL, suggesting that BRs act positively on root elongation under the control of auxin. Altogether, our results indicate that DWF4 transcription plays a novel role in the BR-auxin crosstalk associated with root elongation, in addition to its role in BR homeostasis.
منابع مشابه
The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid.
Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line was selected for its increased sensitivity to auxin (x 2 to 3) for the root elongation response. T...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملThe regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis.
Mutants that are defective in brassinosteroid (BR) biosynthesis or signaling display severely retarded growth patterns due to absence of growth-promoting effects by BRs. Arabidopsis (Arabidopsis thaliana) DWARF4 (DWF4) catalyzes a flux-determining step in the BR biosynthetic pathways. Thus, it is hypothesized that the tissues of DWF4 expression may represent the sites of BR biosynthesis in Arab...
متن کاملThe cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation.
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation ...
متن کاملRole of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کامل